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Abstract 

Today server authentication is largely handled through Public Key                 
Infrastructure (PKI) in both the private and the public sector. PKI is                       
established as the defacto standard for Internet communication through the                   
world wide web, and its usage in HTTPS, SSL/TLS (Web PKI). However, in                         
its application to Internet of Things (IoT) devices, using Web PKI                     
infrastructure for server authentication has several shortcomings, including               
issues with validity periods, identity, revocation practice, and governance.                 
Recently, di�erent approaches to decentralized PKI (DPKI) using               
Blockchain technology have been proposed, but so far have lacked                   
practicality in their application to devices commonly used in IoT                   
deployments. The approaches are too resource intensive for IoT devices to                     
handle and even the “light client” protocols have not been resource e�cient                       
enough to be practical. We present BlockQuick, a novel protocol for a                       
super-light client, which features reading blockchain data securely from a                   
remote client. BlockQuick requires less data for validation than existing                   
approaches, like PoPoW or FlyClient, while also providing e�ective means to                     
protect against eclipse and MITM attacks on the network. BlockQuick                   
clients have low kilobyte RAM requirements, which are optimal for IoT                     
devices and applications with embedded MCUs. 

 

Introduction 

Web PKI is the defacto standard for encrypted Internet communication. Today, most                       
Internet tra�c is being encrypted  [mad18] using TLS, which relies on PKI for server                           
authentication. This authentication uses X.509 certi�cates signed by third parties: the                     
Certi�cate Authorities (CAs). Since Netscape  [res01] brought SSL to the Internet with their                         
�rst browser in 1995, the certi�cation of servers has been in the hands of third parties. Since                                 
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1995, many improvements have been made to Web PKI, however, the following issues                         
around governance, revocation, and handling of time in certi�cates persist  [sch10]   [hou16] : 

Time. For the IoT, the current recommendations of the CA/Browser Forum to shorten                         
certi�cate lifetimes  [hou16b] are especially heavyweight. In contrast to personal computers,                     
most IoT devices have more limited connectivity, power, and resources. In many use cases, in                             
fact, the devices can be o�ine, e.g. in storage or on the shelf, for many years. When an IoT                                     
device connects for the �rst time to the Internet, it needs to establish two things: 1) The                                 
current time 2) Secure connectivity. This poses a chicken or egg problem: without the actual                             
current time, the device can't validate Web PKI certi�cates in order to securely communicate,                           
and without Web PKI certi�cate validation, it does not have a trusted source for time.  

Previous solutions to this problem often trade-o� security as a work-around. Such as: 

- Falling back to read time from non-authenticated time sources  [alr18] such as NTP                         
[wic18] , GPS  [kar17] 

- Accept insecure time from the same server that is o�ering the certi�cate to be                           
validated  [tsc15] 

- Usage of a hard-coded factory build time timestamp when the real-time is not known 

This problem is further ampli�ed with ever shorter lived certi�cates. With shorter lived                         
certi�cates, the certi�cates stored on the device, such as the root certi�cates or cached                           
endpoint certi�cates, may well have all have expired. This issue is even more serious because                             
many of today's resource-e�cient IoT devices have very little non volatile storage - often less                             
than the recommended minimum of Web PKI root certi�cates. Without a trustworthy                       
understanding of time and potentially expired certi�cates, IoT devices are prone to                       
man-in-the-middle attacks  [sel15]  and fake time servers  [mal15] . 

Multiple Certi�cates. In addition to the issue of time, PKI has, by design, no method to                               
detect duplicate identities. It is not possible for any peer of the system to know how many                                 
certi�cates represent the same identity. This enables attacks using alternative sets of                       
certi�cates without the user, the victim, or the certi�cate authority knowing.  [gre17] 

Governance. There is a third issue stemming from the lack of governance structure of Web                             
PKI. In Web PKI there are, at the time of writing, 3,625 valid intermediate certi�cates                             
[cen19] . Each of these certi�cates can be used by their holders to create valid certi�cates for                               
any domain.  Unfortunately, misuse is  [kim17]  and has been common  [ven14]   [lav14] .  

Revocation. Lastly, revocation is a necessary part of the certi�cate lifecycle and is de�ned in                             
PKI via CRL and OCSP. Unfortunately, implementations vary especially on IoT devices.                       
The features to enable the device to detect and respond to revocation are usually missing, and                               
adoption from service providers to actually announce revoked certi�cates via these                     
mechanisms is very low  [liu15] . For many IoT use cases, Web PKI revocation is unfortunately                             
non-functional.  

2 

https://www.schneier.com/academic/paperfiles/paper-pki.pdf
https://tools.ietf.org/html/draft-iab-web-pki-problems-01
http://hou16b/
https://alrawi.github.io/static/papers/alrawi_sok_sp19.pdf
https://aws.amazon.com/blogs/iot/using-device-time-to-validate-aws-iot-server-certificates/
https://zxsecurity.co.nz/presentations/201707_Defcon-ZXSecurity-GPSSpoofing.pdf
https://mailarchive.ietf.org/arch/msg/dtls-iot/hHxQvwoLUCDgW1oianMJYbNJDMI
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEF%20CON%2023%20-%20Jose-Selvi-Breaking-SSL-Using-Time-Synchronisation-Attacks.pdf
https://eprint.iacr.org/2015/1020.pdf
https://www.wired.com/2017/04/hackers-hijacked-banks-entire-online-operation/
https://censys.io/certificates?q=validation.nss.valid%3A+true+AND+parsed.extensions.basic_constraints.is_ca%3A+true
http://www.umiacs.umd.edu/~tdumitra/papers/CCS-2017.pdf
https://www.venafi.com/assets/pdf/wp/Exposing_the_Malicious_Use_of_Keys_and_Certificates.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/12_1_1.pdf
https://securepki.org/paper/imc15.pdf


 

DPKI. In response to these shortcomings, decentralized public key infrastructure based on                       
blockchain technology has been proposed  [but15]  [sin17]  [fro14]  [pat18] . Deploying a                     
public key infrastructure on a decentralized blockchain network has the bene�ts of alleviating                         
all four PKI shortcomings: time, multiple certi�cates, governance, revocation. Though                   
authors agree on these theoretical bene�ts, adoption of DPKI among IoT devices so far has                             
been hindered by the absence of practical light client implementations  [pac32]  [mag18] . In                         
this paper we want to introduce a new light client protocol that can be added to the                                 
Ethereum  [but14] blockchain, allowing DPKI constructions to use Ethereum smart                   
contracts without e�ectively locking out constrained devices. 

Related light clients . In recent work, Bünz et.al. have proposed FlyClient  [bun19] ,                       
introducing a super-light client class of light clients for use in the Ethereum network. The                             
super-light client needs to download only a logarithmic amount of block headers for                         
validation, but requires the availability of at least one honest miner. In the context of IoT                               
devices, this restriction seems unrealistic because many remote devices are easy targets for                         
network manipulation such as eclipse attacks  [hei15] . Individual devices can often be isolated                         
when attackers intermediate cellular networks  [sha15]  [mey04]  [rij15] or WiFi networks                     
[van18] and run Man-In-The-Middle (MITM) attacks there  [lee19] . Also, this is true for any                           
mobile device that can be stolen and placed into a maliciously constructed network                         
containing no honest miners at all. As such, a truly secure light client must have the ability to                                   
identify when no honest miner is available at all, e.g. when the clients' local network has been                                 
manipulated. 

Contribution: BlockQuick 

We introduce BlockQuick, a new super-light client protocol for Ethereum, and similar                       
blockchains, that has sublinear - in fact near constant - bandwidth requirements for chain                           
validation while being resistant to eclipse and MITM attacks. It enables a client to sync up to                                 
a relatively recent block (dependent on a chosen parameter 𝜟 t ) using a  consensus                         
reputation table . The amount of data that needs to be synced from blockchain nodes is                             
independent of the block height (the total number of existing blocks), but depends on the                             
historic majority change rate of miners within the consensus reputation table. We show that                           
this means, for blockchains such as Bitcoin and Ethereum, only a �xed amount of data needs                               
to be synced - Below 50kb for Ethereum and ~20kb for a further modi�ed variant thereof. 
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Blockchain Additions: 

The BlockQuick protocol can be added to existing blockchains as long as each mined block                             
header contains the network peer information of the block miner (Internet address and                         
public id) and a corresponding cryptographic signature of the header. In case of recoverable                           
ECDSA signatures, as used in Bitcoin and Ethereum, the public key is already part of the                               
signature and hence does not need to be an explicit part of the block header. 

The additional required consensus rules for full nodes on the network are: 

- Each block needs to have a cryptographic signature (and public key, if not included in                             
the signature). 

- Each block needs to contain an inklusion proof in form of a Merkle tree root of all                                 
previous block headers. 

- Each miner should be reachable under the Internet address speci�ed in the block. 

BlockQuick Client Protocol 

A client needs, at a minimum, a single last known blockchain block header hash. In an IoT                                 
use case, this might be a recent block header hash at the time of manufacturing. Additionally,                               
the client needs either a list of seed nodes or a mechanism such as DNS to look seed nodes up.                                       
These seed nodes do not correspond to a list of trusted nodes - we will see how the protocol is                                       
able to trust data without needing to trust the nodes supplying the data. 

Consensus Reputation Table. The consensus reputation table is not centrally provided to                       
clients but is constructed on each client based on the last known block header. For example,                               
in a Proof-of-Work (PoW) system the client can construct the consensus reputation table by                           
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reading 100 previous block headers from the last known state of the blockchain. All past                             
block headers of the blockchain can be validated on the client using the parent block                             
checksum alone. Thus, clients can even fetch these block headers from untrusted nodes as the                             
data can be validated using the existing block header and its contained parent block hash.                             
Once the client has those past block headers fetched and validated, it creates the Consensus                             
Reputation Table from the information in the headers as follows: 

The proposed light client protocol establishes a reputation system on the mining                       
nodes in the network. The reputation of each mining node corresponds directly to                         
the percentage of blocks that each mining node contributed compared to all mining                         
nodes in a given time frame. The time frame is the consensus group’s history length                             
parameter 𝜟 t , with units in the number of blocks. In a PoW consensus, the                           
percentage of mined blocks during the last 𝜟 t  blocks corresponds to their                       
proportional computational proof power among all participants. A miner who                   
mined and signed 10% of the𝜟 t recent blocks thereby shows to have 10% of the total                                 
computational power during that time frame, generalized for other consensus                   
algorithms we call this their  consensus share . 

As such, clients can cache a list of most reputable miners together with the most                             
recent known good block for a quicker update mechanism. Each miner thereby is                         
stored as a triplet of the peer's public key, its address, and its consensus share. The                               
client needs to store at least N reputable miners so that the sum of their consensus                               
share is >50% but should store more up to 𝜟 t  miners, depending on local storage                             
allowance. 

Simple Connection Algorithm 

If the client has an existing cached list of last miners, it tries to reach enough miners such that                                     
the sum of their consensus share is at least >50% in the Quick Update process: 
 
Quick Update  - For each miner M in the client's miner list: 

(1) Client connects to the miner and fails if not found or not matching the stored public                               
key. 

(2) Client downloads most recent block headers from the miner. 
(3) If the client successfully reached enough miners corresponding to >50% consensus                     

share the client can stop. 
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Slow Update - If less than 50% of the consensus share could be connected to the device                                 
assumes that a "long period of time" has passed and falls back to this slower update                               
sub-routine: 

(1) The client de�nes the current consensus group as the 𝜟 t last blocks from it's last                             
known blocks. Based on this consensus group, the consensus share of each peer in                           
that consensus group is calculated. E.g. if  
𝜟 t  = 100 and miner A created 25 of the last 100 blocks his consensus share is 25%. 
The data is either cached on the client or can be downloaded from any peer,                             
validating the block-header data based on the existing block header hash on the client. 

(2) Then the client downloads the most recent block headers from any peer 
(3) The client further fetches incrementally the whole missing link of block-headers                     

between last known block-header and the most recent header. 
(4) For each block-header in the range, starting at the last known block-header, the client                           

assigns a score based on the known consensus share of the block miner or zero if the                                 
block miner is not known. 
For example, in the above picture, block 1 mined by miner E receives a score of 0,                                 
since its corresponding miner E is not part of the previous consensus group. 

(5) The score value of each new block is then increased once per miner from the known                               
consensus group having a block in the following block list. The logic is that when a                               
miner B created and signed a block on this candidate branch of the blockchain, it                             
meant the miner must have trusted this branch. 
So when the client sees block 2 mined by miner B, it receives a positive score of 25%                                   
and the score of block 1 is also increased to 25% - because it has now been con�rmed                                   
by a miner who represents 25% of the consensus group. 

(6) If no block reaches the threshold score of >50%, the device will disconnect and                           
assume manipulation. 
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(7) With each found block above the 50% threshold, the consensus group is updated to                           
now include that block, allowing the consensus shares to adjust over time, mirroring                         
the shift in the consensus group in the real world when miners shut down their                             
operation or new miners start operation. 

(8) Finally, when the >50% threshold has been established for some new blocks, but                         
cannot be established for further blocks (e.g. because there are not enough further                         
blocks), the client repeats the Quick Update process based on the new current                         
consensus group. If the quick update process succeeds, the most recent block above                         
the 50% threshold is now stored as the new most recently known block on the device. 

During the execution of this algorithm, the client might encounter multiple di�erent                       
versions of the blockchain, potentially malicious forks and outdated versions. But unless an                         
attacker manages to gain more than 50% of the consensus share by their private keys, the                               
client will not accept a wrong chain. However, for outdated-but-valid blocks, it is important                           
that the client always executes the Quick Update after a Slow Update in order to validate with                                 
multiple miners that this is still the most recent version of the blockchain.  

The present algorithm allows a device to follow the blockchain through gradual changes of                           

the consensus group as long as the impact of the change within the 𝜟 t last blocks is below                                   
50% of consensus share. 

Sublinear Sync Size 

The presented solution enables IoT devices to establish trust in a recent blockchain block, by                             
operating on block headers and verifying the miner signatures. In existing blockchains, such                         
as Ethereum and Bitcoin, an inclusion proof for previous blocks is given with the previous                             
block hash of each block. Validating this inclusion proof though requires iterating all blocks                           
linearly in this order. Given the current size of the Ethereum headers, especially for a device                               
that has been o�ine for an extended period of time, the incremental check would take too                               
much time and bandwidth to be realistic. E.g. given 3 years since the last known block, an                                 
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average block header size of 500 bytes, and assuming one header every 15 seconds, a total of                                 
6,307,200 blocks (~3gb) would need to be downloaded and checked by an IoT device. This is                               
not feasible for the vast majority of IoT devices. 

To address this, there are two necessary adjustments to Ethereum. First, merkelized inclusion                         
proofs can be utilized as described by Crosby and Wallach  [cro09] and Bünzel et.al. later                             
[bun19] . With this addition in a new  historyRoot �eld in each block, a client can validate the                                 
inclusion of any previous block based on the Merkle proof. The Merkle inclusion proof has                             
only a logarithmic size. By using it, the device can skip all headers in between the devices last                                   
known block and the current most recent block. 

Secondly, when a device connects to a miner, it not only requests the most recent block                               
header, but it also provides its last known block header and 𝜟 t . This information allows the                               
server/miner to determine whether there has been a “Majority Change” in the consensus                         

group between the last known state on the client and current state of the blockchain. The                               
server/miner can then calculate the minimum number of block headers that the device needs                           
to synchronize.  

Using this approach, the number of blocks that needs to be fetched, even after a long period,                                 
is massively reduced. From any point in the blockchain known to the device, the server/miner                             
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node only needs to provide a Merkle proof to a recent block, plus the N following blocks                                 
required for the device to con�rm these blocks based on its known, consensus group. So, in                               
the example of bridging three years or 6,307,200 blocks, the device would fetch a Merkle                             
inclusion proof of the logarithmic size of the total blockchain. We estimate an upper worst                             
case using the  [cro09] binary Merkle tree and 50 years, or 105 million blocks. The Merkle                               
proof would thus require log 2 (105,000,000) = ~26 nodes @ 32 byte each for SHA-256,                           
totaling 832 bytes for the inclusion proof. Additionally, the most recent𝜟 t block headers are                             
required to build the new consensus group and to validate the approval of the current                             
consensus group. At 500 bytes per header, and 𝜟 t = 100, those headers accumulate to 50kb,                               
totaling the required data transfer at ~51kb.  

Majority Change. Over the lifetime of a blockchain, the consensus group will have                         
incremental changes. New miners come online and old miners stop their participation in the                           
network. Over an extended period of time, this means that the consensus group that has been                               
known to the device, and the consensus group of the current longest chain, might be                             
signi�cantly di�erent. At some point, the di�erence might be so large that the last known                             
consensus group won't be su�cient to con�rm the recent blocks with >50% con�dence                         
because there are not enough known signatures present after a certain point in the chain. In                               
this case, the device would not be able to accept the most recent 𝜟 t blocks directly as they                                   
can't be con�rmed by its last known consensus group. In this case, the server needs to provide                                 
additional blocks around the time of the consensus group change in order to allow the client                               
to reconstruct the gradual change of the consensus group. E�ectively, this provides a �rst                           
incremental sync to a new blockchain state that is still con�rmable by the device’s last known                               
consensus group. If necessary, there can be an arbitrary amount of these incremental steps. 

Given a blockchain state A known to the device, and a consensus group G a at that point, then                                   
there can be a blockchain state B behind which >50% of the members of G a , by consensus                                 
share, are not participating in the network anymore (not producing and signing blocks                         
anymore). If such a blockchain state B exists, then the miner/server needs to provide the                             
device the blockchain state immediately before B that was still signed by more than 50% of                               
the devices known consensus group by consensus share. It is this amount of >50% consensus                             
group changes that determine the total size of data required for the proof. For each majority                               
change of the consensus group, there is at least one inclusion proof to that block, as well as                                   
𝜟 t  blocks around this change, necessary for the client to update its consensus group. 

In a highly volatile blockchain, this could degrade to be linear to blockchain length, meaning                             
that every 𝜟 t blocks a majority of the consensus group by consensus share has changed.                             
However, when looking at all past blocks of Ethereum as a reference we can determine that                               
while major changes in the consensus group were frequent within at the beginning of the                             
blockchain, with growing adoption, the change of the consensus group has slowed down.                         
During the last 5 million blocks there was no major consensus group change anymore, which                             
means that a device would not need to sync any intermediate states.  
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Block Header Shelling 

As discussed above, the total needed data transfer size using the BlockQuick algorithm                         
linearlily depends on three factors: 1) block header size 2) consensus group history length𝜟 t                             
and 3) consensus change rate. While the consensus change rate is dependent on the economy                             
of the blockchain and consensus protocol, the consensus group history length is de�ned by                           
the client, based on security requirements. 

The block header size is dependent on the chain implementation. In the case of current                             
Ethereum  [woo19] , the header size is around 500 byte. However, Ethereum block-header                       
size can be optimized by partitioning the full header into two parts: 1) An outer block header                                 
shell and 2) an inner full block header. The outer block header shell is reduced to only                                 
include the information required to validate using the BlockQuick algorithm:  parentHash ,                     
nonce ,  difficulty ,  number ,  ipAddress ,  historyRoot ,  shellSignature as well as a 256 bit hash of the                             
inner full block header ( fullHeaderHash ). The second partition - the full block header does                           
not need to be transferred to the client during validation until the client is able to con�rm a                                   
block. The client will need the full block header only from the most recent con�rmed block                               
to access  stateRoot , transactionRoot, et cetera to perform further application-speci�c                   
functions. 

In the case of PoW, as pictured above, the relevant signature and di�culty are captured in the                                 
shell. This header partitioning applied on Ethereum would further cut the maximum                       
required data by more than half. Using the same type of calculation as before, but now with                                 
block header size = 189, a consensus group history length 𝜟 t = 100, and no consensus                               
majority change, we estimate 20kb of total sync size on average. 
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Summary 

Empirical studies  [lec11] have shown that misused private keys and stolen certi�cates are the                           
most common risks in the PKI. We propose a new secure blockchain client that makes it                               
feasible for all applications to implement DPKI solutions, replacing or complementing                     
[bal17] Web PKI, while eliminating the risks introduced by third parties. By adopting the                           
proposed approach, IoT devices are enabled to securely read blockchain information,                     
including the current timestamp and registered DPKI information about domains,                   
certi�cates, and ownership. Further using Ethereum Merkle proofs against the full block                       
headers  stateRoot allows the clients to validate each of these pieces of information against the                             
last known good block. 

We've shown a novel method to allow constrained devices typical to the IoT space to                             
consume blockchain based data. This is the �rst building block to enable a more secure DPKI                               
leveraging blockchain-based smart contracts. Devices are enabled to fetch block time and                       
arbitrary state data from the Blockchain. In comparison to existing clients for the Ethereum                           
network, we can demonstrate the magnitude of the impact: 

Node Type  Trust Model  Storage  Bandwidth  Duration 

geth --syncmode=full  Decentralized  ~220GB  1 >90GB  2 days 

geth --syncmode=fast  Decentralized  ~130GB  3 >90GB 2  hours 

geth --syncmode=light  Decentralized  ~1.2GB 3  ~1.2GB 3  minutes 

BlockQuick  Decentralized  ~20kb 3  ~20kb 3  sub-second 

Trad. Web PKI Client  Centralized  ~20kb - 500kb  4 ~5kb 3  sub-second 

 

Although our solution is still larger than the typical handshake size of a traditional centralized                             
Web PKI Client, it becomes feasible to execute on most hardware that is capable of Web PKI                                 
handshakes.  

   

1 Retrieved from  https://etherscan.io/chartsync/chaindefault  on May 10th 2019 
2 Estimated based on total block sizes  https://etherscan.io/chart/blocksize  on May 15th 2019 
3 As measured on May 10th 2019 
4 Range from minimal four AWS IoT certi�cates (20kb) and max all Mozilla NSS certi�cates (500kb) as of May 
10th 2019 

https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html 
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/  
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Potential Attacks 

Chain Forks and Network Splits. In Ethereum, Bitcoin and other existing PoW networks,                         
a fork chain can be created by a few malicious miners or even by a software bug. In the case of                                         
a fork chain, a blockchain client must still be able to connect to the blockchain, and to detect                                   
which of the forks is authoritative, and which of the forks should be ignored. From the                               
perspective of a client device using the BlockQuick algorithm, the deciding factor is always                           
the consensus share that each block can achieve. 

It is for this reason that the threshold for accepting a block in BlockQuick is >50% of the 
known consensus share. This ensures that, from the device perspective during a network 
split, there is either no authoritative network or just one. For example, say there is a large 
network split e.g. due to atlantic network cables failing.  In this case we have two new 
networks A and B. Each active miner and client sees either network A or network B, 
depending on their geographic location. Given a consensus reputation table from just before 
the fork we know that the consensus share S of the sum of all miners from A and all miners 
from B must have been 100%: 

∑
 

m ∈ A
Sm + ∑

 

m ∈ B
Sm = 1  

From there it follows that there can be no split between A and B such that both sides share is                                       
bigger than 50%. We can di�erentiate three cases:  

0.5 .5α : ∑
 

m ∈ A
Sm >  → ∑

 

m ∈ B
Sm < 0  

Network A is authoritative with more 
50% consensus share, clients will accept its 
blocks. Network B is a fork, and no block 
from B will be accepted by a client. 

0.5 .5β : ∑
 

m ∈ A
Sm <  → ∑

 

m ∈ B
Sm > 0  

Network B is authoritative with more 50% 
consensus share, clients will accept its 
blocks. Network A is a fork, and no block 
from B will be accepted by a client. 

0.5 .5γ : ∑
 

m ∈ A
Sm =  → ∑

 

m ∈ B
Sm = 0  

Neither network A nor network B can 
reach more than 50% consensus share and 
thus no network is authoritative. 

While case is unlikely (exactly 50% of the miners would need to be both sides of a split), the    γ                                  
scenario of exactly 50% consensus share on both sides can be made at mathematically                           
impossible by choosing an odd number for  𝜟t . E.g. choosing  𝜟t =  101 would not allow a                                 
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50%/50% split (A=51 vs B=50 or vice versa in the worst case), making only one network the                                 
authoritative survivor. 

Eclipse Attacks. Eclipse attacks as discussed by Heilman et.al.  [hei15] were directed at                         
node-to-node communication within full-nodes of the Bitcoin peer to peer network. For                       
remote clients as found in super-light client use cases, network uplinks are typically even                           
more scarce. A mobile IoT device will usually have a single uplink to the Internet, such as a                                   
cellular network or via WiFi networks in its vicinity. In these cases, eclipsing all connections                             
that the device has to the outside world becomes much easier. Lee et.al  [lee19] showed how,                               
in a WiFi network, a device can be spoofed using crafted ARP packets, therebye routing all                               
data tra�c through the attacker. This way of monopolizing all network connections to the                           
device allows for advanced manipulation, such as presenting the device with multiple                       
di�erent non-authoritative blockchain variants. PoW light clients, such as Ethereum geth                     
that validate based on longest chain / highest di�culty, are prone to these attacks because                             
they can only successfully choose "the best" chain given a set of alternatives. But, when all                               
presented alternative chain versions are non-authoritative, the client will still accept one of                         
them. The same is true for FlyClient as proposed by Bünz et.al.  [bun19] - here a heuristic                                 
comparison of presented alternative chains is done. In the result, the FlyClient can decide                           
which of these alternatives is most likely the correct chain. These clients can successfully solve                             
the decision problem on which of presented alternatives is most likely the authoritative chain,                           
but they fail to identify an abort criteria, when none of the presented chain versions are                               
authoritative. 

BlockQuick addresses Eclipse Attacks, and speci�cally the extreme case when a single actor                         
monopolizes all connections, using the 50% consensus threshold. Let's assume an attacker                       
constructs a forked blockchain with 10 blocks of wrong data entries. The authoritative                         
version of the PoW chain would, in this case, grow quickly longer than this forked wrong                               
chain. However, devices without a direct connection to the authoritative longer PoW chain                         
would not be able to see the di�erence. In BlockQuick however, the PoW di�culty and                             
length are not the primary deciding factors. Instead devices will iterate the blocks, in this case                               
the 10 new blocks that the device is not aware of, and run the Slow Update mechanism. In                                   
each new block the device validates the cryptographic signature of the miner and compares                           
these with the known miner identities in its  consensus reputation table . Only if a block                             
receives a consensus score of >50% is it accepted by the client. Receiving a chain with a lower                                   
total score results in an abort. Since all 10 new blocks from the example have been crafted and                                   
signed by the attacker, they, on their own, would not receive any reputation score and                             
therefore would not cross the >50% threshold required for the client to accept these new                             
blocks. Furthermore, since this is a forked chain, there are no other miners who would                             
contribute on-top of this fork. Thus there are also no other later signatures that would                             
increase the reputation score. Without additional signatures from existing reputable miners                     
in the blockchain, it does not matter how much longer the attackers fork chain becomes (10s,                               
100s or 1000s of blocks), their reputation score will stay 0% and the BlockQuick client won't                               
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accept them. As a result, the attacked client device would reject the o�ered blockchain as                             
non-authoritative and close the connection.  

Discussion 

Blockchain Time Source. As Adam Langley pointed out  [lan14] , today, secure time                       
mechanisms have a circular dependendency between knowing the time and having the ability                         
to interpret secure certi�cate validity dates. With BlockQuick there is now - for the �rst time                               
we believe - a protocol to break this circular dependency. In our approach, the trust anchor                               
that is stored on a computing device is a cryptographic hash of the last known good block                                 
header (SHA-3-256 / KECCAK-256 in current Ethereum). The bene�t of using a                       
cryptographic hash instead of a public/private key pair is that there is no individual entity                             
that can be attacked to gain access to a private key part, and no third party that could go                                     
rogue with a private key.  

BlockQuick can only be used for a rough understanding of time, however. Its precision is                             
enough to validate certi�cates, but not precise enough for many other tasks. Ethereum, for                           
instance, has a 15 second block interval - this is the minimum latency for our calculation.                               
Clients can never con�rm up to the most recent block - In the worst case, blocks are                              2

Δt      
required past the next con�rmed block, which in the case of  𝜟t = 100 would lead to a mean                                     
latency of (15*100/2) = 750 seconds. For clients which need higher accuracy, it still solves the                               
initial circular dependency on checking certi�cate validities. With this rough understanding                     
of time, clients can now connect to a time server using standard PKI validation to improve                               
the accuracy and trust-level of the retrieved time. Authoritatively accurate time servers could                         
in fact be registered in blockchain data directly, using certi�cate pinning as discussed below. 

Certi�cate Pinning.  We have presented the foundation for constrained devices to securely                       
read recent blockchain data. We propose to solve aforementioned PKI issues by                       
complementing Web PKI with pinning certi�cates in a distributed blockchain, such as                       
Ethereum. Pinning a certi�cate is a means of storing a certi�cate hash which then can be used                                 
to validate the concrete identity of a certi�cate. This combination solves the aforementioned                         
problems of PKI: Time, Revocation, and Multiple Identities as the blockchain storage                       
becomes the authoritative registry for the currently valid certi�cate for any entity. For                         
Governance there are alternatives in development such as ENS  [joh19] but the description of                           
a complete solution in the form of a smart-contract structure is an ongoing research area. 

Too-fast consensus share changes. The BlockQuick algorithm detects wrong blockchain                   
branches based on the consensus group score. When the score does not grow above the                             
threshold of 50%, the algorithm discards the branch. This puts a limit on the maximum                             
change rate of a consensus group. If any block exists immediately after which the majority of                               
the consensus group has changed (e.g. 51% of all miners suddenly stop mining), the                           
BlockQuick algorithm would not consider the chain authentic. Should there be a                       
catastrophic event leading to such a sudden loss of the majority, the blockchain would                           
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e�ectively stop for the client. This is a new theoretical limitation directly resulting from the                             
design. Our testing on Ethereum history though showed that neither chain ever had such an                             
event so far. It is future work to closely investigate the likelihood of such an event.  

Selection of  𝜟 t . Increasing the size of 𝜟 t also increases linearly how much data has to be                                 
fetched for validation. A larger size of𝜟 t reduces consensus group �uctuations stored on the                             
devices, but also keeps consensus shares of nodes up that have not produced blocks in a long                                 
time. Higher �uctuation can lead, in the worst case, to a consensus share change that is at too                                   
fast a rate for the devices to follow. Implementations thus may choose di�erent 𝜟 t values as                               
appropriate. Additionally, the blockchain consensus may be extended to enforce changes                     
rates of less than 50% within a given 𝜟 t timeframe. This might also render small 𝜟 t values                                 
practical. It is future work to investigate this further. 
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